Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild-alkali and dilute-acid pretreated lignocellulosic biomass residues
نویسنده
چکیده
Background: Production of cellulose-degrading enzymes from Aspergillus terreus D34 using different growth substrates was studied under solid-state cultivation. We have tested two lignocellulosic biomass residues viz., rice straw (RS) and sugarcane bagasse (BG), both separately and in combinations, and crystalline cellulose as a sole source of carbon for cellulase production. We also demonstrated different cellulase cocktail formulations and enzymatic saccharification studies on mild-alkali and dilute-acid pretreated RSand BG-biomass residues. Results: Substrate-specific non-denaturing native gels showed two exoglucanases, four endoglucanases, three β-glucosidases, and four xylanases in the microbial culture extract of RS-grown cells. While in the BG-culture extract, two exoglucanases, five endoglucanases, three β-glucosidases, and four xylanases were detected. Similarly, in crystalline cellulose-grown culture extract, three exoglucanases, four endoglucanases, one β-glucosidase, and two xylanases were detected. However, the cellulase compositions were highly varied with the culture extracts obtained from the mixed biomass (RSBG) growth substrate. We found that few enzymes were specifically induced while others were repressed in RSBG-grown cultures. Enzymatic saccharification resulted in the production of maximum reducing sugars of 0.733 and 0.498 g g with mild-alkali treated RSand BG-biomass residues with saccharification yields reaching up to 82.8% ± 1.0% and 59.3% ± 1.7%, respectively. Conclusions: The cellulase activities, namely FPase, CMCase, avicelase, β-glucosidase, and endoxylanase, were significantly higher in the BG-grown culture extract. Optimization of microbial growth carbon sources produced an efficient cellulase enzyme cocktail mixture with an approximately twofold higher total cellulase (FPase) activity that drastically reduced the required amount of enzyme (in terms of unit volumes) for enzymatic hydrolysis studies.
منابع مشابه
Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment
Lignocelluloses from agricultural, industrial, and forest residues constitute a majority of the total biomass present in the world. Environmental concerns of disposal, costly pretreatment options prior to disposal, and increased need to save valuable resources have led to the development of value-added alternate technologies such as bioethanol production from lignocellulosic wastes. In the pres...
متن کاملDilute acid pretreatment and enzymatic hydrolysis of sorghum biomass for sugar recovery--a statistical approach.
Sorghum is one of the commercially feasible lignocellulosic biomass and has a great potential of being sustainable feedstock for renewable energy. As with any lignocellulosic biomass, sorghum also requires pretreatment which increases its susceptibility to hydrolysis by enzymes for generating sugars which can be further fermented to alcohol. In the present study, sorghum biomass was evaluated f...
متن کاملHigh temperature pre-digestion of corn stover biomass for improved product yields
INTRODUCTION The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic en...
متن کاملThe combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse
BACKGROUND The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn...
متن کاملElucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass
BACKGROUND Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015